쉽고 빠르게 익히는 실전 LLM

최신 LLM 활용법부터 RAG, 멀티모달 트랜스포머, RLHF/RLAIF까지
$34.02
SKU
9791169213653
+ Wish
[Free shipping over $100]

Standard Shipping estimated by Fri 05/2 - Thu 05/8 (주문일로부 10-14 영업일)

Express Shipping estimated by Tue 04/29 - Thu 05/1 (주문일로부 7-9 영업일)

* 안내되는 배송 완료 예상일은 유통사/배송사의 상황에 따라 예고 없이 변동될 수 있습니다.
Publication Date 2025/03/31
Pages/Weight/Size 183*235*30mm
ISBN 9791169213653
Categories IT 모바일 > OS/데이터베이스
Description
최신 LLM 트렌드와 실무를 가장 쉽고 빠르게 배우는 방법
GPT부터 라마, 클로드 모델까지 완성형 실전 LLM 가이드


이 책은 LLM 개발 단계별 가이드, 모범 사례, 실제 사례 연구, 실습 예제를 통해 LLM이 생소했던 사람도 당장 개발을 시작할 수 있을 만큼 LLM에 대한 전반적인 지식을 쉽고 친절하게 설명한다. 또한, LLM을 현업에서 최적화하고 배포하는 실무적인 내용까지 다루어, 입문자부터 전문가까지 폭넓게 활용할 수 있는 완성형 가이드이다.

더욱 심화된 내용으로 돌아온 2판은 최신화된 미세 조정(Fine-tunning), 오픈 소스와 클로즈드 소스 LLM 비교 및 전략적 활용법, 데이터 형식 및 파라미터 설정법, 임베딩 최적화, 고급 프롬프트 엔지니어링, LLM 평가를 다루며 최신 트렌드에 맞춰 RAG 챗봇, 추천 시스템, 강화 학습 기반 AI 정렬(RLHF/RLAIF), 멀티모달 트랜스포머 구축까지 다룹니다. LLM의 입문서이자, 실전 가이드인 이 책을 통해 AI 기술의 선두가 되어 보자.
Contents
PART 1 LLM 소개

CHAPTER 1 LLM의 세계로
_1.1 LLM이란?
_1.2 많이 사용되는 LLM
_1.3 LLM을 이용한 애플리케이션
_1.4 마치며

CHAPTER 2 LLM을 이용한 의미 기반 검색
_2.1 들어가는 글
_2.2 작업
_2.3 솔루션 개요
_2.4 구성 요소
_2.5 통합
_2.6 클로즈드 소스 구성 요소의 비용
_2.7 마치며

CHAPTER 3 프롬프트 엔지니어링의 첫 번째 단계
_3.1 들어가는 글
_3.2 프롬프트 엔지니어링
_3.3 여러 모델과 프롬프트 작업하기
_3.4 마치며

CHAPTER 4 AI 생태계: 조각 맞추기
_4.1 들어가는 글
_4.2 끊임없이 변화하는 클로즈드 소스 AI의 성능
_4.3 AI 추론 vs 생각
_4.4 사례 연구 1: 검색 증강 생성(RAG)
_4.5 사례 연구 2: 자동화된 AI 에이전트
_4.6 마치며

PART 2 LLM 활용법

CHAPTER 5 맞춤형 미세 조정으로 LLM 최적화하기
_5.1 들어가는 글
_5.2 미세 조정과 전이학습: 기초 안내서
_5.3 오픈AI 미세 조정 API 살펴보기
_5.4 오픈AI CLI로 맞춤형 예제 준비하기
_5.5 오픈AI CLI 설정하기
_5.6 첫 번째 미세 조정 LLM
_5.7 마치며

CHAPTER 6 고급 프롬프트 엔지니어링
_6.1 들어가는 글
_6.2 프롬프트 인젝션 공격
_6.3 입력/출력 유효성 검사
_6.4 배치 프롬프팅
_6.5 프롬프트 체이닝
_6.6 사례 연구: AI는 수학을 얼마나 잘하나?
_6.7 마치며

CHAPTER 7 임베딩과 모델 아키텍처 맞춤화
_7.1 들어가는 글
_7.2 사례 연구: 추천 시스템 만들기
_7.3 마치며

CHAPTER 8 AI 정렬: 제1원리
_8.1 들어가는 글
_8.2 누구에게, 그리고 어떤 목적에 맞춰 정렬할 것인가?
_8.3 편향 완화 도구로서의 정렬
_8.4 정렬의 핵심 원칙
_8.5 헌법 AI: 자기 정렬을 향한 한 걸음
_8.6 마치며

PART 3 고급 LLM 사용법

CHAPTER 9 파운데이션 모델을 넘어서
_9.1 들어가는 글
_9.2 사례 연구: VQA
_9.3 사례 연구: 피드백 기반 강화 학습
_9.4 마치며

CHAPTER 10 고급 오픈 소스 LLM 미세 조정
_10.1 들어가는 글
_10.2 예시: BERT를 이용한 애니메이션 장르 다중 레이블 분류
_10.3 예시: GPT-2를 이용한 LaTeX 생성
_10.4 시난의 현명하면서도 매력적인 답변 생성기: SAWYER
_10.5 마치며

CHAPTER 11 LLM을 프로덕션 환경에서 사용하기
_11.1 들어가는 글
_11.2 클로즈드 소스 LLM을 프로덕션 환경에 배포하기
_11.3 프로덕션 환경에 오픈 소스 LLM 배포하기
_11.4 마치며

CHAPTER 12 LLM 평가하기
_12.1 들어가는 글
_12.2 생성 작업 평가하기
_12.3 이해 과제 평가하기
_12.4 마치며
_12.5 계속 나아가세요!

PART 4 부록

APPENDIX A LLM 자주 묻는 질문(FAQ)
APPENDIX B LLM 용어 해설
APPENDIX C LLM 애플리케이션 개발 고려사항
Author
시난 오즈데미르,신병훈
현재 Shiba Technologies의 창립자이자 CTO이다. 존스 홉킨스 대학교의 데이터 과학 강사였으며 데이터 과학 및 머신러닝에 관한 여러 교과서를 집필했다. 또한 RPA 기능을 갖춘 엔터프라이즈급 대화형 AI 플랫폼인 Kylie.ai의 창립자이기도 하다. 존스홉킨스대학교에서 순수 수학을 공부하면서 학업을 시작했다. 존스홉킨스대학교와 주 의회에서 수년간 데이터 과학을 강의했다. 이후에는 인공 지능 및 데이터 과학을 사용하는 스타트업(Legion Analytics)을 설립해 기업의 영업 팀을 지원하고 있다. 와이콤비네이터(Y Combinator) 액셀러레이터에서 연구원 생활을 마친 후 빠르게 성장하고 있는 자신의 회사에서 대부분 시간을 보내고, 데이터 과학을 위한 교육 자료를 만들고 있다.
현재 Shiba Technologies의 창립자이자 CTO이다. 존스 홉킨스 대학교의 데이터 과학 강사였으며 데이터 과학 및 머신러닝에 관한 여러 교과서를 집필했다. 또한 RPA 기능을 갖춘 엔터프라이즈급 대화형 AI 플랫폼인 Kylie.ai의 창립자이기도 하다. 존스홉킨스대학교에서 순수 수학을 공부하면서 학업을 시작했다. 존스홉킨스대학교와 주 의회에서 수년간 데이터 과학을 강의했다. 이후에는 인공 지능 및 데이터 과학을 사용하는 스타트업(Legion Analytics)을 설립해 기업의 영업 팀을 지원하고 있다. 와이콤비네이터(Y Combinator) 액셀러레이터에서 연구원 생활을 마친 후 빠르게 성장하고 있는 자신의 회사에서 대부분 시간을 보내고, 데이터 과학을 위한 교육 자료를 만들고 있다.