Do it! 데이터 과학자를 위한 실전 머신러닝

13가지 핵심 머신러닝 모델을 직접 구현하며 레벨 업!
$36.23
SKU
9791163034964
+ Wish
[Free shipping over $100]

Standard Shipping estimated by Thu 12/5 - Wed 12/11 (주문일로부 10-14 영업일)

Express Shipping estimated by Mon 12/2 - Wed 12/4 (주문일로부 7-9 영업일)

* 안내되는 배송 완료 예상일은 유통사/배송사의 상황에 따라 예고 없이 변동될 수 있습니다.
Publication Date 2023/08/14
Pages/Weight/Size 188*257*16mm
ISBN 9791163034964
Categories IT 모바일 > OS/데이터베이스
Description
10년 차 데이터 분석가의 실력 상승 비법을 담았다!
13가지 핵심 머신러닝 모델을 직접 구현하면서
머신러닝 입문자를 실무의 세계로 안내하는 책


이 책은 저자가 데이터 분석가로 10년 동안 일하며 깨달은 실력 상승의 비법을 예비 실무자에게 전하고자 집필한 책이다. 그 비법은 바로 기본으로 돌아가 선형 모델, 트리 모델 등 13가지 핵심 머신러닝 모델을 집중적으로 공부하는 것이다. 먼저 각 모델의 밑바탕에 있는 알고리즘 기초과 수리 이론을 살펴보고, 간단한 형태로 모델을 직접 구현해 본다. 그리고 최적화된 파이썬 패키지로 다시 모델링한 다음, 둘 사이에 어떤 차이가 발생하는지를 비교해 보며 머신러닝의 작동 원리를 탐구한다.

머신러닝은 이론만 공부하던 입문자가 처음 실무를 맞닥뜨릴 때 큰 어려움을 겪는 분야이다. 이때 겪는 어려움은 결국 실력이 쌓여야만 근본적으로 극복할 수 있다. 기본 모델을 깊이 이해할수록 다양한 모델들이 서로 동떨어져 있지 않고 기본 모델과 이론적으로 많은 부분을 공유한다는 사실을 깨달을 것이다. 그러고 나면 실제 업무나 연구에서 전보다 더 유연하고 효율적으로 머신러닝 모델링을 수행할 수 있을 것이다.
Contents
첫째마당 머신러닝 준비하기

1장 머신러닝과 파이썬
__1.1 머신러닝 알아보기
____1.1.1 머신 러닝은 왜 생겨났을까?
____1.1.2 이 책에서 배우는 머신러닝 모델 한눈에 보기
____1.1.3 이 책의 학습 구성 한눈에 보기
__1.2 머신러닝에 쓰는 알고리즘 개념 이해하기
__1.3 실습 환경 설정하기
____1.3.1 이 책에서 사용하는 파이썬 패키지 살펴보기
__1.4 머신러닝 절차 빠르게 체험하기
____1.4.1 데이터셋 준비하기
____1.4.2 데이터셋 분할하기
____1.4.3 데이터 전처리
____1.4.4 학습 데이터를 이용한 모델 학습
____1.4.5 학습 데이터와 검증 데이터 쌍을 이용한 하이퍼파라미터 튜닝
____1.4.6 테스트 데이터셋에 대한 최종 성능 측정과 평가

둘째마당 선형 모델을 이용한 지도 학습

__선형 모델 준비하기

2장 최소 제곱법 모델
__2.1 최소 제곱법 모델이란?
____2.1.1 최소 제곱법 모델의 정의
__2.2 정규 방정식으로 최소 제곱법 모델 구현하기
____2.2.1 정규 방정식을 이용한 풀이 이론
____2.2.2 정규 방정식으로 풀이 구현하기
____2.2.3 정규 방정식 구현의 단점
__2.3 특잇값 분해를 이용한 최소 제곱법 모델 구현하기
____2.3.1 SVD-OLS를 이용한 풀이 이론
____2.3.2 정규 방정식 풀이의 단점과 SVD-OLS 풀이의 장점
____2.3.3 SVD-OLS를 이용한 풀이 구현하기
__2.4 TSVD-OLS를 이용한 모델 구현하기
____2.4.1 TSVD-OLS를 이용한 풀이 이론
____2.4.2 TSVD-OLS를 이용한 풀이 구현하기
__2.5 패키지로 표현하기
__2.6 최소 제곱법 모델 보충 수업
____2.6.1 통계 모델로서의 OLS
____2.6.2 결정 계수
____2.6.3 화이트 박스 모델과 블랙 박스 모델
__되새김 문제

3장 로지스틱 회귀 모델
__사전 지식 훑어보기
__3.1 로지스틱 회귀 모델이란?
__3.2 로지스틱 회귀 모델 구현하기
____3.2.1 로지스틱 회귀 모델의 기본 이론
____3.2.2 로지스틱 회귀 모델의 심화 이론
____3.2.3 로지스틱 회귀 모델 구현하기
__3.3 패키지로 표현하기
__3.4 로지스틱 회귀 모델 보충 수업
____3.4.1 피처 스케일링과 파이프라인
____3.4.2 통계 모델로서의 로지스틱 회귀 기법
____3.4.3 교차검증법
____3.4.4 피처선택법
__되새김 문제

4장 라쏘 모델
__사전 지식 훑어보기
__4.1 라쏘 모델이란?
__4.2 라쏘 모델 구현하기
____4.2.1 라쏘 모델의 이론
____4.2.2 라쏘 모델 구현하기
__4.3 패키지로 표현하기
__4.4 라쏘 모델 보충 수업
____4.4.1 LARS 기반 라쏘 모델
____4.4.2 모델 선택법
__되새김 문제

5장 릿지 회귀 모델
__사전 지식 훑어보기
__5.1 릿지 회귀 모델이란?
__5.2 릿지 회귀 모델 구현하기
____5.2.1 릿지 회귀 모델의 기본 이론
____5.2.2 릿지 회귀 모델의 심화 이론
____5.2.3 릿지 회귀 모델 구현하기
__5.3 패키지로 표현하기
__5.4 릿지 회귀 모델 보충 수업
____5.4.1 편향-분산 상충 관계와 릿지 회귀의 분산
____5.4.2 릿지 분류 모델
____5.4.3 엘라스틱 넷 회귀 모델
__되새김 문제

셋째마당 트리 모델을 이용한 지도 학습

__트리 모델 준비하기

6장 결정 트리 모델
__사전 지식 훑어보기
__6.1 결정 트리 모델이란?
__6.2 결정 트리 모델 구현하기
____6.2.1 결정 트리 분류 모델의 이론
____6.2.2 결정 트리 분류 모델 구현하기
__6.3 패키지로 표현하기
__6.4 결정 트리 모델 보충 수업
____6.4.1 회귀 트리
____6.4.2 그리드 서치
____6.4.3 피처 중요도
__되새김 문제

7장 랜덤 포레스트 모델
__사전 지식 훑어보기
__7.1 랜덤 포레스트 모델이란?
__7.2 랜덤 포레스트 모델 구현하기
____7.2.1 랜덤 포레스트 모델의 이론
____7.2.2 랜덤 포레스트 분류 모델 구현하기
__7.3 패키지로 표현하기
__7.4 랜덤 포레스트 모델 보충 수업
____7.4.1 랜덤 포레스트 회귀 모델
____7.4.2 OOB 점수
____7.4.3 ExtraTrees
____7.4.4 피처 중요도
__되새김 문제

8장 그레이디언트 부스팅 트리 모델
__사전 지식 훑어보기
__8.1 그레이디언트 부스팅 트리 모델이란?
__8.2 그레이디언트 부스팅 트리 모델 구현하기
____8.2.1 그레이디언트 부스팅 트리 모델의 이론
____8.2.2 부스팅 트리 회귀 모델 구현하기
__8.3 패키지로 표현하기
__8.4 그레이디언트 부스팅 트리 모델 보충 수업
____8.4.1 설명 가능 인공지능
____8.4.2 GBT 모델 이후의 부스팅 기법
__되새김 문제

넷째마당 기타 지도 학습 모델

9장 K-최근접 이웃 모델
__사전 지식 훑어보기
__9.1 K-최근접 이웃 모델이란?
__9.2 K-최근접 이웃 모델 구현하기
____9.2.1 KNN 모델의 기본 이론
____9.2.2 KNN 모델의 심화 이론
____9.2.3 KNN 분류 모델 구현하기
__9.3 패키지로 표현하기
__9.4 K-최근접 이웃 모델 보충 수업
____9.4.1 KNN 회귀 모델
____9.4.2 결정 경계
____9.4.3 고정 반지름 근접 이웃 모델
____9.4.4 KNN 이상값 모델
__되새김 문제

10장 서포트 벡터 머신 모델
__10.1 서포트 벡터 머신 모델이란?
__10.2 서포트 벡터 머신 모델 구현하기
____10.2.1 서포트 벡터 머신 모델의 이론
____10.2.2 SVM 모델 구현하기
__10.3 패키지로 표현하기
____10.3.1 다른 패키지로 구현하기
__10.4 서포트 백터 머신 모델 보충 수업
____10.4.1 서포트 벡터 회귀로 확장하기
____10.4.2 클래스 분류의 확률 판정법
__되새김 문제

11장 다층 퍼셉트론 모델
__사전 지식 훑어보기
__11.1 다층 퍼셉트론 모델이란?
__11.2 다층 퍼셉트론 모델 구현하기
____11.2.1 다층 퍼셉트론 모델의 이론
____11.2.2 다층 퍼셉트론 모델 구현하기
__11.3 패키지로 표현하기
__11.4 다층 퍼셉트론 모델 보충 수업
____11.4.1 MLP 회귀 모델
__되새김 문제

다섯째마당 비지도 학습 모델

12장 K-평균 군집화 모델
__12.1 K-평균 군집화 모델이란?
__12.2 K-평균 군집화 모델 구현하기
____12.2.1 K-평균 군집화 모델의 이론
____12.2.2 K-평균 군집화 모델 구현하기
__12.3 패키지로 표현하기
__12.4 K-평균 군집화 모델 보충 수업
____12.4.1 K-평균 군집화 모델 적용이 부적절한 데이터셋
____12.4.2 군집화 결과 평가하기
__되새김 문제

13장 계층적 군집화 모델
__13.1 계층적 군집화 모델이란?
__13.2 계층적 군집화 모델 구현하기
____13.2.1 계층적 군집화 모델의 이론
____13.2.2 계층적 군집화 모델 구현하기
__13.3 패키지로 표현하기
__13.4 계층적 군집화 모델 보충 수업
____13.4.1 덴드로그램으로 군집 계층 시각화하기
__되새김 문제

14장 주성분 분석 모델
__사전 지식 훑어보기
__14.1 주성분 분석 모델이란?
__14.2 주성분 분석 모델 구현하기
____14.2.1 주성분 분석 모델의 이론
____14.2.2 PCA 모델 구현하기
__14.3 패키지로 표현하기
__14.4 주성분 분석 모델 보충 수업
____14.4.1 다양한 차원 축소 기법
__되새김 문제

[부록] 한눈에 보는 머신러닝 용어 지도
되새김 문제 풀이
참고문헌

찾아보기
Author
배기웅
카이스트 수리과학과에서 학사와 석사 학위를 받은 후 실제 사회 현상에 대한 머신러닝 모델링에 관심이 생겨 카이스트 기술경영학부에서 박사 과정으로 머신러닝을 활용한 계량 마케팅을 전공했다. 영화나 드라마 등의 엔터테인먼트 산업에서 제품의 제목과 소비자 리뷰 등의 텍스트 정보를 이용해 매출을 모델링하는 연구로 박사 학위를 취득했다. 이후 삼성 SDS에서 데이터 분석가로 일하고 있다. 데이터 분석 교육, 검정, 인력 양성에 관심이 많아 현재 관련 업무를 담당하고 있
카이스트 수리과학과에서 학사와 석사 학위를 받은 후 실제 사회 현상에 대한 머신러닝 모델링에 관심이 생겨 카이스트 기술경영학부에서 박사 과정으로 머신러닝을 활용한 계량 마케팅을 전공했다. 영화나 드라마 등의 엔터테인먼트 산업에서 제품의 제목과 소비자 리뷰 등의 텍스트 정보를 이용해 매출을 모델링하는 연구로 박사 학위를 취득했다. 이후 삼성 SDS에서 데이터 분석가로 일하고 있다. 데이터 분석 교육, 검정, 인력 양성에 관심이 많아 현재 관련 업무를 담당하고 있