이 책은 자연어 응용 분야에서 상당한 성능 향상을 이뤄 주목받고 있는 BERT 모델을 기초부터 다양한 변형 모델, 응용 사례까지 한 권으로 담은 실무 지침서다. 가장 먼저 사전 학습을 개선하여 성능을 향상하는 ALBERT, BART, ELECTRA, SpanBERT, RoBERTa, VideoBERT와 같은 BERT 변형 모델을 간단한 언어로 잘 풀어서 친절하게 설명한다.
다음으로 BioBERT 및 ClinicalBERT와 같은 특정 도메인에 해당하는 BERT 모델을 배우고 BERT의 재미있는 변형 모델인 VideoBERT도 살펴본다. 특별히, 본문 맨 뒤에는 한국어에 잘 동작하는 한국어 언어 모델 KoBERT, KoGPT2, KoBART를 추가 집필하여 붙였다. 이 책을 따라 모든 학습을 마치고 나면 BERT와 변형 모델을 활용해 여러 자연어 처리 태스크를 수월하게 처리할 수 있을 것이다.
Contents
[PART I BERT 시작하기]
CHAPTER 1 트랜스포머 입문
1.1 트랜스포머 소개
1.2 트랜스포머의 인코더 이해하기
1.3 트랜스포머 디코더 이해하기
1.4 인코더와 디코더 결합
1.5 트랜스포머 학습
1.6 마치며
1.7 연습 문제
1.8 보충 자료
CHAPTER 2 BERT 이해하기
2.1 BERT 기본 개념
2.2 BERT의 동작 방식
2.3 BERT의 구조
2.4 BERT 사전 학습
2.5 하위 단위 토큰화 알고리즘
2.6 마치며
2.7 연습 문제
2.8 보충 자료
CHAPTER 3 BERT 활용하기
3.1 사전 학습된 BERT 모델 탐색
3.2 사전 학습된 BERT에서 임베딩을 추출하는 방법
3.3 BERT의 모든 인코더 레이어에서 임베딩을 추출하는 방법
3.4 다운스트림 태스크를 위한 BERT 파인 튜닝 방법
3.5 마치며
3.6 연습 문제
3.7 보충 자료
[PART II BERT 파생 모델]
CHAPTER 4 B ERT의 파생 모델 I: ALBERT, RoBERTa, ELECTRA, SpanBERT
4.1 ALBERT
4.2 ALBERT에서 임베딩 추출
4.3 RoBERTa
4.4 ELECTRA 이해하기
4.5 SpanBERT로 스팬 예측
4.6 마치며
4.7 연습 문제
4.8 보충 자료
CHAPTER 5 BERT 파생 모델 II: 지식 증류 기반
5.1 지식 증류 소개
5.2 DistilBERT: BERT의 지식 증류 버전
5.3 TinyBERT 소개
5.4 BERT에서 신경망으로 지식 전달
5.5 마치며
5.6 연습 문제
5.7 보충 자료
[PART III BERT 적용하기]
CHAPTER 6 텍스트 요약을 위한 BERTSUM 탐색
6.1 텍스트 요약
6.2 텍스트 요약에 맞춘 BERT 파인 튜닝
6.3 ROUGE 평가 지표 이해하기
6.4 BERTSUM 모델의 성능
6.5 BERTSUM 모델 학습
6.6 마치며
6.7 연습 문제
6.8 보충 자료
CHAPTER 7 다른 언어에 BERT 적용하기
7.1 M-BERT 이해하기
7.2 M-BERT는 다국어 표현이 어떻게 가능한가?
7.3 XLM
7.4 XLM-R 이해하기
7.5 언어별 BERT
7.6 마치며
7.7 연습 문제
7.8 보충 자료
CHAPTER 8 sentence-BERT 및 domain-BERT 살펴보기
8.1 sentence-BERT로 문장 표현 배우기
8.2 sentence-transformers 라이브러리 탐색
8.3 지식 증류를 이용한 다국어 임베딩 학습
8.4 domain-BERT
8.5 마치며
8.6 연습 문제
8.7 보충 자료
CHAPTER 9 VideoBERT, BART
9.1 VideoBERT로 언어 및 비디오 표현 학습
9.2 BART 이해하기
9.3 BERT 라이브러리 탐색
9.4 마치며
9.5 연습 문제
9.6 보충 자료
CHAPTER 10 한국어 언어 모델: KoBERT, KoGPT2, KoBART
10.1 KoBERT
10.2 KoGPT2
10.3 KoBART
Author
수다르산 라비찬디란,전희원,정승환,김형준
데이터 과학자이자 연구원이자 저명한 저술가. 안나 대학교에서 정보 기술 학사 학위를 취득했다. 연구 분야는 자연어 처리 및 컴퓨터 비전, 딥러닝 및 강화학습의 실제 구현에 중점을 두고 있다. 오픈 소스 기여자이며 스택 오버플로 질문에 답하는 것을 좋아한다. 또한 베스트셀러 『Hands-On Reinforcement Learning with Python』(Manning, 2018)을 집필했다.
데이터 과학자이자 연구원이자 저명한 저술가. 안나 대학교에서 정보 기술 학사 학위를 취득했다. 연구 분야는 자연어 처리 및 컴퓨터 비전, 딥러닝 및 강화학습의 실제 구현에 중점을 두고 있다. 오픈 소스 기여자이며 스택 오버플로 질문에 답하는 것을 좋아한다. 또한 베스트셀러 『Hands-On Reinforcement Learning with Python』(Manning, 2018)을 집필했다.