해석 가능한 AI

설명 가능한 머신러닝 시스템 구축
$42.26
SKU
9791161758411
+ Wish
[Free shipping over $100]

Standard Shipping estimated by Thu 12/5 - Wed 12/11 (주문일로부 10-14 영업일)

Express Shipping estimated by Mon 12/2 - Wed 12/4 (주문일로부 7-9 영업일)

* 안내되는 배송 완료 예상일은 유통사/배송사의 상황에 따라 예고 없이 변동될 수 있습니다.
Publication Date 2024/04/30
Pages/Weight/Size 188*235*18mm
ISBN 9791161758411
Categories IT 모바일 > OS/데이터베이스
Description
AI 기술이 발전하고 활용 사례가 늘어남에 따라 모델이 한 예측의 안전성과 신뢰성을 확보하기 위해 왜 그런 예측에 도달했는지, 또 어떻게 하면 결과가 달라졌을지 설명을 해야 할 상황도 늘어나고 있다. 머신러닝 모델에 최신 해석 기술을 적용해 공정하고 설명 가능한 AI 시스템을 구축하는 데 도움을 주고자 하는 책이다. 해석 가능성에 대한 얘기는 많지만, 실무에 필요한 기술을 설명하거나 실용적인 지침을 제공하는 자료는 거의 없다. 이 책은 그 격차를 해소하고자 한다.
Contents
1부. 해석 가능성 개요

1장. 소개
1.1 진단+ AI ― AI 시스템 예제
1.2 머신러닝 시스템 유형
1.2.1 데이터 표현
1.2.2 지도 학습
1.2.3 비지도 학습
1.2.4 강화 학습
1.2.5 진단+ AI를 위한 머신러닝 시스템
1.3 진단+ AI 구축
1.4 진단+ AI의 문제점
1.4.1 데이터 누출
1.4.2 편향
1.4.3 규제 미준수
1.4.4 (콘셉트) 드리프트
1.5 강건한 진단+ AI 시스템 구축
1.6 해석 가능성 대 설명 가능성
1.6.1 해석 기법 유형
1.7 이 책에서는 무엇을 배우나?
1.7.1 이 책을 읽는 동안 어떤 도구를 사용하게 되는가?
1.7.2 이 책을 읽기 전에 무엇을 알아야 하는가?
요약

2장. 화이트박스 모델
2.1 화이트박스 모델
2.2 진단+ ― 당뇨병 진행
2.3 선형 회귀
2.3.1 선형 회귀 해석
2.3.2 선형 회귀의 한계
2.4 결정 트리
2.4.1 결정 트리 해석
2.4.2 결정 트리의 한계
2.5 일반화 가산 모델(GAM)
2.5.1 회귀 스플라인
2.5.2 진단+ 당뇨병을 위한 GAM
2.5.3 GAM 해석
2.5.4 GAM 한계
2.6 앞으로 살펴볼 블랙박스 모델
요약

2부. 모델 처리 해석

3장. 모델 애그노스틱 기법: 글로벌 해석 가능성
3.1 고등학교 학생 성적 예측기
3.1.1 탐색적 데이터 분석
3.2 트리 앙상블
3.2.1 랜덤 포레스트 훈련
3.3 랜덤 포레스트 해석
3.4 모델 애그노스틱 기법: 글로벌 해석 가능성
3.4.1 부분 의존성 도표
3.4.2 특성 상호작용
요약

4장. 모델 애그노스틱 기법: 로컬 해석 가능성
4.1 진단+ AI: 유방암 진단
4.2 탐색적 데이터 분석
4.3 심층 신경망
4.3.1 데이터 준비
4.3.2 DNN 훈련 및 평가
4.4 DNN 해석
4.5 LIME
4.6 SHAP
4.7 앵커
요약

5장. 돌출 매핑
5.1 진단+ AI: 침습성 관 암종 탐지
5.2 탐색적 데이터 분석
5.3 합성곱 신경망
5.3.1 데이터 준비
5.3.2 훈련 및 평가
5.4 CNN 해석
5.4.1 확률 풍경
5.4.2 LIME
5.4.3 시각적 귀속 기법
5.5 바닐라 역전파
5.6 유도 역전파
5.7 기타 경사 기반 방법
5.8 Grad-CAM 및 유도 Grad-CAM
5.9 어떤 귀속 기법을 사용해야 할까?
요약

3부. 모델 표현 해석

6장. 레이어와 유닛의 이해
6.1 시각적 이해
6.2 합성곱 신경망: 요약
6.3 망 해부 프레임워크
6.3.1 개념 정의
6.3.2 망 조사
6.3.3 일치 정도 정량화
6.4 레이어 및 유닛 해석
6.4.1 망 해부 실행
6.4.2 개념 식별기
6.4.3 학습 과업별 개념 식별기
6.4.4 개념 식별기 시각화
6.4.5 망 해부의 한계
요약

7장. 의미론적 유사성의 이해
7.1 감정 분석
7.2 탐색적 데이터 분석
7.3 신경 단어 임베딩
7.3.1 원-핫 인코딩
7.3.2 워드투벡
7.3.3 글로브 임베딩
7.3.4 감성 분석 모델
7.4 의미론적 유사성 해석
7.4.1 유사성 측정
7.4.2 주성분 분석
7.4.3 t-분포 확률적 이웃 임베딩(t-SNE)
7.4.4 의미론적 유사성 시각화 검증
요약

4부. 공정성과 편향

8장. 공정성과 편향 완화
8.1 성인 소득 예측
8.1.1 탐색적 데이터 분석
8.1.2 예측 모델
8.2 공정성 개념
8.2.1 인구통계 동등성
8.2.2 기회와 확률의 평등
8.2.3 기타 공정성 개념
8.3 해석 가능성과 공정성
8.3.1 입력 특성을 통한 차별
8.3.2 표현을 통한 차별
8.4 편향 완화
8.4.1 무지를 통한 공정성
8.4.2 가중치 재설정을 통한 라벨 편향 수정
8.5 데이터 세트용 데이터 시트
요약

9장. 설명 가능한 AI로 가는 길
9.1 설명 가능한 AI
9.2 반사 실적 설명
요약

부록 A. 준비하기
A.1 파이썬
A.2 깃 코드 저장소
A.3 콘다 환경
A.4 주피터 노트북
A.5 도커

부록 B. 파이토치
B.1 파이토치는 무엇인가?
B.2 파이토치 설치
B.3 텐서
B.3.1 데이터 유형
B.3.2 CPU 및 GPU 텐서
B.3.3 운영
B.4 데이터 세트 및 데이터로더
B.5 모델링
B.5.1 자동 미분
B.5.2 모델 정의
B.5.3 훈련
Author
아제이 탐피,최영재
머신러닝에 대한 확고한 배경을 갖고 있다. 박사 학위의 주제는 신호 처리와 머신러닝에 중점을 두고 있다. 5G 셀룰러 네트워크에 적용되는 강화 학습, 볼록 최적화, 전통 머신러닝 기술에 대한 주제로 주요 콘퍼런스 및 잡지에 논문을 발표했다. 현재 책임 있는 AI와 공정성에 관심을 두고 대형 기술 회사에서 머신러닝 엔지니어로 근무하고 있다. 과거에는 마이크로소프트의 선임 데이터 과학자로서 제조, 소매, 금융 등 여러 산업의 고객을 위한 복잡한 AI 솔루션을 배포했다.
머신러닝에 대한 확고한 배경을 갖고 있다. 박사 학위의 주제는 신호 처리와 머신러닝에 중점을 두고 있다. 5G 셀룰러 네트워크에 적용되는 강화 학습, 볼록 최적화, 전통 머신러닝 기술에 대한 주제로 주요 콘퍼런스 및 잡지에 논문을 발표했다. 현재 책임 있는 AI와 공정성에 관심을 두고 대형 기술 회사에서 머신러닝 엔지니어로 근무하고 있다. 과거에는 마이크로소프트의 선임 데이터 과학자로서 제조, 소매, 금융 등 여러 산업의 고객을 위한 복잡한 AI 솔루션을 배포했다.