디자인 패턴의 아름다움

객체지향 패러다임부터 설계 원칙, 코딩 규칙, 리팩터링 기법, 디자인 패턴까지
$42.26
SKU
9791192987101
+ Wish
[Free shipping over $100]

Standard Shipping estimated by Fri 12/6 - Thu 12/12 (주문일로부 10-14 영업일)

Express Shipping estimated by Tue 12/3 - Thu 12/5 (주문일로부 7-9 영업일)

* 안내되는 배송 완료 예상일은 유통사/배송사의 상황에 따라 예고 없이 변동될 수 있습니다.
Publication Date 2023/05/26
Pages/Weight/Size 288*245*25mm
ISBN 9791192987101
Categories IT 모바일 > 컴퓨터 공학
Description
구글러의 코드 품질 관리 비법을 공개한다

코드의 품질을 매우 중요시했던 구글러들은 코드에 달린 주석에서 작은 마침표 오류까지 수정을 요청하기에 이르렀고, 그만큼 엄격했던 코드 품질 관리 덕분에 프로젝트의 유지 관리 비용이 매우 낮아졌다. 이와 같은 경험을 집대성한 이 책에서는 200여 개의 실제 프로젝트 사례를 바탕으로 객체지향 패러다임, 설계 원칙, 코딩 규칙, 리팩터링 기법, 디자인 패턴의 5가지 측면에서 고품질의 코드 작성 방법을 상세히 배울 수 있다.
Contents
옮긴이 머리말 xiii
베타리더 후기 xiv
시작하며 xvi

CHAPTER 1 개요 1

1.1 코드 설계를 배우는 이유 1
__1.1.1 고품질의 코드 작성 2 / 1.1.2 복잡한 코드 개발 다루기 2
__1.1.3 프로그래머의 기본 능력 4 / 1.1.4 경력 개발에 필요한 기술 5
__1.1.5 생각해보기 5
1.2 코드 품질 평가 방법 6
__1.2.1 유지 보수성 8 / 1.2.2 가독성 9 / 1.2.3 확장성 10 / 1.2.4 유연성 10
__1.2.5 간결성 11 / 1.2.6 재사용성 11 / 1.2.7 테스트 용이성 12 / 1.2.8 생각해보기 12
1.3 고품질 코드를 작성하는 방법 12
__1.3.1 객체지향 13 / 1.3.2 설계 원칙 13 / 1.3.3 디자인 패턴 14
__1.3.4 코딩 규칙 15 / 1.3.5 리팩터링 기법 15 / 1.3.6 생각해보기 17
1.4 과도한 설계를 피하는 방법 18
__1.4.1 코드 설계의 원래 의도는 코드 품질을 향상시키는 것이다 18
__1.4.2 코드 설계의 원칙은 앞에 문제가 있고, 뒤에 방안이 있다는 것이다 18
__1.4.3 코드 설계의 응용 시나리오는 복잡한 코드에 적용되어야 한다 19
__1.4.4 지속적인 리팩터링은 과도한 설계를 효과적으로 방지할 수 있다 20
__1.4.5 특정 시나리오 외의 코드 설계에 대해 이야기하지 않는다 20
__1.4.6 생각해보기 21

CHAPTER 2 객체지향 프로그래밍 패러다임 23

2.1 객체지향이란 무엇인가? 23
__2.1.1 객체지향 프로그래밍과 객체지향 프로그래밍 언어 23
__2.1.2 엄격하게 정의되지 않은 객체지향 프로그래밍 언어 25
__2.1.3 객체지향 분석과 객체지향 설계 26
__2.1.4 UML에 대한 참고 사항 27
__2.1.5 생각해보기 28
2.2 캡슐화, 추상화, 상속, 다형성이 등장한 이유 28
__2.2.1 캡슐화 28 / 2.2.2 추상화 31 / 2.2.3 상속 33 /
__2.2.4 다형성 35 / 2.2.5 생각해보기 39
2.3 객체지향 분석, 객체지향 설계, 객체지향 프로그래밍을 수행하는 방법 40
__2.3.1 예제 소개와 난이도 분석 40
__2.3.2 객체지향 분석 수행 방법 41
__2.3.3 객체지향 설계 방법 45
__2.3.4 객체지향 프로그래밍을 하는 방법 53
__2.3.5 생각해보기 55
2.4 객체지향 프로그래밍, 절차적 프로그래밍, 함수형 프로그래밍의 차이 55
__2.4.1 절차적 프로그래밍 55
__2.4.2 객체지향 프로그래밍과 절차적 프로그래밍의 비교 59
__2.4.3 함수형 프로그래밍 62
__2.4.4 객체지향 프로그래밍과 함수형 프로그래밍의 비교 69
__2.4.5 생각해보기 69
2.5 객체지향 프로그래밍처럼 보이지만 실제로는 절차적 프로그래밍 70
__2.5.1 getter, setter 메서드 남용 70
__2.5.2 전역 변수와 전역 메서드의 남용 74
__2.5.3 데이터와 메서드 분리로 클래스 정의하기 77
__2.5.4 생각해보기 79
2.6 빈약한 도메인 모델에 기반한 전통적인 개발 방식은 OOP를 위반하는가? 79
__2.6.1 빈약한 도메인 모델에 기반한 전통적인 개발 방식 80
__2.6.2 풍성한 도메인 모델에 기반한 DDD 개발 방식 82
__2.6.3 두 가지 개발 방식의 비교 83
__2.6.4 빈약한 도메인 모델에 기반한 전통적인 개발 방식이 널리 사용되는 이유 90
__2.6.5 풍성한 도메인 모델에 기반한 DDD 개발 방식의 응용 시나리오 91
__2.6.6 생각해보기 92
2.7 추상 클래스와 인터페이스 93
__2.7.1 추상 클래스와 인터페이스의 정의와 차이점 93
__2.7.2 추상 클래스와 인터페이스의 의미 97
__2.7.3 추상 클래스와 인터페이스의 모의 구현 100
__2.7.4 추상 클래스와 인터페이스의 응용 시나리오 102
__2.7.5 생각해보기 102
2.8 인터페이스 기반 프로그래밍:
모든 클래스에 대해 인터페이스를 정의해야 할까? 102
__2.8.1 인터페이스를 이해하는 다양한 방법 103
__2.8.2 설계 철학을 실제로 적용해보자 104
__2.8.3 인터페이스의 남용을 방지하려면 어떻게 해야 할까? 108
__2.8.4 생각해보기 109
2.9 상속보다 합성 109
__2.9.1 상속이 더 이상 사용되지 않는 이유 109
__2.9.2 합성이 상속에 비해 나은 장점 112
__2.9.3 합성을 사용할지 상속을 사용할지 결정하기 114
__2.9.4 생각해보기 115

CHAPTER 3 설계 원칙 117

3.1 단일 책임 원칙 117
__3.1.1 단일 책임 원칙의 정의 및 해석 117
__3.1.2 클래스에 단일 책임이 있는지 판단하는 방법 118
__3.1.3 클래스의 책임이 가능한 한 자세하게 설명되어 있는지 여부 121
__3.1.4 생각해보기 123
3.2 개방 폐쇄 원칙 123
__3.2.1 확장할 때는 개방, 수정할 때는 폐쇄 123
__3.2.2 코드를 수정하는 것은 개방 폐쇄 원칙을 위반하는 것일까? 129
__3.2.3 확장할 때는 개방, 수정할 때는 폐쇄를 달성하는 방법 131
__3.2.4 프로젝트에 개방 폐쇄 원칙을 유연하게 적용하는 방법 133
__3.2.5 생각해보기 134
3.3 리스코프 치환 원칙 134
__3.3.1 리스코프 치환 원칙의 정의 134
__3.3.2 리스코프 치환 원칙과 다형성의 차이점 136
__3.3.3 리스코프 치환 원칙을 위반하는 안티 패턴 137
__3.3.4 생각해보기 139
3.4 인터페이스 분리 원칙 139
__3.4.1 API나 기능의 집합으로서의 인터페이스 139
__3.4.2 단일 API나 기능으로서의 인터페이스 141
__3.4.3 객체지향 프로그래밍에서의 인터페이스 142
__3.4.4 생각해보기 149
3.5 의존 역전 원칙 149
__3.5.1 제어 반전 150 / 3.5.2 의존성 주입 152 / 3.5.3 의존성 주입 프레임워크 153
__3.5.4 의존 역전 원칙 154 / 3.5.5 생각해보기 155
3.6 KISS 원칙과 YAGNI 원칙 155
__3.6.1 KISS 원칙의 정의와 해석 155
__3.6.2 적은 줄 수의 코드가 더 간단하지 않다 156
__3.6.3 복잡한 코드가 반드시 KISS 원칙을 위반하는 것은 아니다 158
__3.6.4 KISS 원칙을 만족하는 코드 작성 방법 160
__3.6.5 YAGNI 원칙과 KISS 원칙의 차이 160
__3.6.6 생각해보기 161
3.7 DRY 원칙 161
__3.7.1 코드 논리의 중복 161 / 3.7.2 기능적(의미론적) 중복 164
__3.7.3 코드 실행의 중복 165 / 3.7.4 코드 재사용성 167
__3.7.5 생각해보기 169
3.8 LoD 169
__3.8.1 높은 응집도와 낮은 결합도에 대한 생각 169
__3.8.2 LoD의 정의 171
__3.8.3 정의 해석 및 첫 번째 예제 코드 171
__3.8.4 정의 해석 및 두 번째 예제 코드 174
__3.8.5 생각해보기 177

CHAPTER 4 코딩 규칙 179

4.1 명명과 주석 179
__4.1.1 긴 이름과 짧은 이름 179
__4.1.2 문맥 정보를 사용한 명명 단순화 180
__4.1.3 비즈니스 용어집을 사용한 명명 통일 180
__4.1.4 명명은 정확하지만 추상적이어야 한다 181
__4.1.5 주석에 반드시 포함되어야 하는 것들 181
__4.1.6 주석이 많다고 좋은 것은 아니다 183
__4.1.7 생각해보기 183
4.2 코드 스타일 184
__4.2.1 클래스, 함수의 적절한 크기 184
__4.2.2 한 줄의 적절한 길이 185
__4.2.3 빈 줄을 활용한 코드 블록 구분 185
__4.2.4 4칸 들여쓰기 혹은 2칸 들여쓰기 185
__4.2.5 여는 중괄호는 어디에 놓여야 할까 186
__4.2.6 클래스의 멤버 순서 186
__4.2.7 생각해보기 187
4.3 코딩 팁 187
__4.3.1 복잡한 코드의 모듈화 187 / 4.3.2 함수의 매개변수 관리 188
__4.3.3 함수의 플래그 매개변수 제거 189 / 4.3.4 깊은 중첩 코드 제거 191
__4.3.5 설명 변수 194 / 4.3.6 생각해보기 195

CHAPTER 5 리팩터링 기법 197

5.1 리팩터링의 네 가지 요소: 목적, 대상, 시기, 방법 197
__5.1.1 리팩터링의 목적 197 / 5.1.2 리팩터링의 대상 199
__5.1.3 리팩터링의 시기 199 / 5.1.4 리팩터링의 방법 200
__5.1.5 생각해보기 201
5.2 단위 테스트 201
__5.2.1 단위 테스트에 대해 201
__5.2.2 단위 테스트 코드를 작성하는 이유 204
__5.2.3 단위 테스트를 설계하는 방법 206
__5.2.4 단위 테스트를 작성하기 어려운 이유 209
__5.2.5 생각해보기 210
5.3 코드 테스트 용이성 210
__5.3.1 테스트 가능한 코드를 작성하는 방법 210
__5.3.2 테스트가 불가능한 코드 220
__5.3.3 생각해보기 222
5.4 디커플링 223
__5.4.1 디커플링이 중요한 이유 223
__5.4.2 코드를 디커플링해야 하는지 판단하기 223
__5.4.3 코드 디커플링 방법 224
__5.4.4 생각해보기 227
5.5 리팩터링 예제 227
__5.5.1 ID 생성기의 요구 사항과 개발 배경 228
__5.5.2 사용 가능한 수준의 코드 구현 228
__5.5.3 코드 품질 문제를 찾는 방법 230
__5.5.4 가독성 향상을 위한 리팩터링 232
__5.5.5 코드 테스트 용이성 향상을 위한 리팩터링 234
__5.5.6 단위 테스트 코드 작성을 위한 리팩터링 236
__5.5.7 예외 처리를 위한 리팩터링 239
__5.5.8 생각해보기 251

CHAPTER 6 생성 디자인 패턴 253

6.1 싱글턴 패턴 (1) 253
__6.1.1 싱글턴 패턴의 정의 253 / 6.1.2 싱글턴 패턴의 구현 254
__6.1.3 싱글턴 패턴의 적용 259 / 6.1.4 싱글턴 패턴의 단점 263
__6.1.5 싱글턴 패턴의 대안 266 / 6.1.6 생각해보기 268
6.2 싱글턴 패턴 (2) 268
__6.2.1 싱글턴 패턴의 유일성 268
__6.2.2 스레드 전용 싱글턴 패턴 269
__6.2.3 클러스터 환경에서의 싱글턴 패턴 270
__6.2.4 다중 인스턴스 패턴 272
__6.2.5 생각해보기 273
6.3 팩터리 패턴 (1) 273
__6.3.1 단순 팩터리 패턴 274 / 6.3.2 팩터리 메서드 패턴 278
__6.3.3 추상 팩터리 패턴 281 / 6.3.4 팩터리 패턴의 적용 대상 283
__6.3.5 생각해보기 283
6.4 팩터리 패턴 (2) 284
__6.4.1 DI 컨테이너와 팩터리 패턴의 차이 284
__6.4.2 DI 컨테이너의 핵심 기능 284
__6.4.3 DI 컨테이너의 설계와 구현 287
__6.4.4 생각해보기 292
6.5 빌더 패턴 293
__6.5.1 생성자를 사용한 객체 생성 293
__6.5.2 setter 메서드를 사용한 멤버 변수 설정 295
__6.5.3 빌더 패턴을 이용한 매개변수 검증 296
__6.5.4 Guava에서 빌더 패턴 적용 299
__6.5.5 빌더 패턴과 팩터리 패턴의 차이 301
__6.5.6 생각해보기 301
6.6 프로토타입 패턴 302
__6.6.1 프로토타입 패턴의 정의 302
__6.6.2 프로토타입 패턴의 적용 302
__6.6.3 프로토타입 패턴의 구현 306
__6.6.4 생각해보기 310

CHAPTER 7 구조 디자인 패턴 313

7.1 프록시 패턴 313
__7.1.1 인터페이스 기반의 프록시 패턴 313
__7.1.2 상속 기반의 프록시 패턴 316
__7.1.3 리플렉션 기반의 동적 프록시 317
__7.1.4 프록시 패턴의 활용 방법 318
__7.1.5 생각해보기 320
7.2 데커레이터 패턴: Java IO 라이브러리의 기본 설계 사상 분석 320
__7.2.1 Java IO 라이브러리의 특이한 사용 방법 320
__7.2.2 상속 기반 설계 322
__7.2.3 데커레이터 패턴 기반 설계 계획 323
__7.2.4 생각해보기 328
7.3 어댑터 패턴 328
__7.3.1 클래스 어댑터와 객체 어댑터 328
__7.3.2 어댑터 패턴의 응용 330
__7.3.3 자바 로깅과 어댑터 패턴 336
__7.3.4 래퍼 패턴 338
__7.3.5 생각해보기 342
7.4 브리지 패턴 343
__7.4.1 브리지 패턴의 정의 343
__7.4.2 브리지 패턴으로 폭발적인 상속 해결하기 343
__7.4.3 생각해보기 344
7.5 퍼사드 패턴 344
__7.5.1 퍼사드 패턴과 인터페이스 설계 345
__7.5.2 퍼사드 패턴의 응용: 인터페이스 사용성 개선하기 346
__7.5.3 퍼사드 패턴의 응용: 인터페이스 성능 향상하기 346
__7.5.4 퍼사드 패턴의 응용: 트랜잭션 문제 해결하기 346
__7.5.5 생각해보기 348
7.6 복합체 패턴 348
__7.6.1 복합체 패턴 기반의 디렉터리 트리 348
__7.6.2 복합체 패턴 기반의 휴먼 트리 353
__7.6.3 생각해보기 356
7.7 플라이웨이트 패턴 356
__7.7.1 체스 게임에서 플라이웨이트 패턴 적용 356
__7.7.2 텍스트 편집기에서 플라이웨이트 패턴 적용 359
__7.7.3 Java의 Integer에서 플라이웨이트 패턴 적용 362
__7.7.4 Java의 String에서 플라이웨이트 패턴 적용 367
__7.7.5 플라이웨이트 패턴과 싱글턴 패턴, 캐시, 오브젝트 풀의 차이 368
__7.7.6 생각해보기 369

CHAPTER 8 행동 디자인 패턴 371

8.1 옵서버 패턴 371
__8.1.1 옵서버 패턴의 정의 371
__8.1.2 옵서버 패턴의 코드 구현 372
__8.1.3 옵서버 패턴의 의미 373
__8.1.4 옵서버 패턴의 적용 376
__8.1.5 비동기식 비차단 옵서버 패턴 377
__8.1.6 EventBus 프레임워크 379
__8.1.7 EventBus 프레임워크를 처음부터 구현하기 382
__8.1.8 생각해보기 388
8.2 템플릿 메서드 패턴 (1) 388
__8.2.1 템플릿 메서드 패턴의 정의와 구현 388
__8.2.2 템플릿 메서드 패턴의 역할: 재사용 390
__8.2.3 템플릿 메서드 패턴의 역할: 확장 392
__8.2.4 생각해보기 395
8.3 템플릿 메서드 패턴 (2) 396
__8.3.1 콜백의 원리와 구현 396
__8.3.2 JdbcTemplate 클래스 398
__8.3.3 setClickListener() 메서드 401
__8.3.4 addShutdownHook() 메서드 402
__8.3.5 템플릿 메서드 패턴과 콜백의 차이점 404
__8.3.6 생각해보기 405
8.4 전략 패턴 405
__8.4.1 전략 패턴의 정의와 구현 405
__8.4.2 전략 패턴으로 분기 결정 대체 408
__8.4.3 전략 패턴을 통한 파일 내용 정렬 410
__8.4.4 전략 패턴의 오용 417
__8.4.5 생각해보기 417
8.5 책임 연쇄 패턴 417
__8.5.1 책임 연쇄 패턴의 정의와 구현 417
__8.5.2 책임 연쇄 패턴 기반의 민감 단어 필터링 423
__8.5.3 책임 연쇄 패턴 기반의 서블릿 필터 426
__8.5.4 책임 연쇄 패턴과 Spring의 인터셉터 430
__8.5.5 책임 연쇄 패턴과 MyBatis 플러그인 432
__8.5.6 생각해보기 439
8.6 상태 패턴 439
__8.6.1 유한 상태 기계란 무엇인가 439
__8.6.2 분기 판단 방법으로 상태 머신 구현하기 442
__8.6.3 테이블 조회 방법으로 상태 머신 구현하기 443
__8.6.4 상태 패턴으로 상태 머신 구현하기 446
__8.6.5 생각해보기 451
8.7 반복자 패턴 (1) 451
__8.7.1 반복자 패턴의 정의와 구현 451
__8.7.2 컬렉션 순회 방법 454
__8.7.3 반복자의 문제 456
__8.7.4 반복자의 문제 해결 458
__8.7.5 생각해보기 463
8.8 반복자 패턴 (2) 464
__8.8.1 스냅숏 기능을 지원하는 반복자 464
__8.8.2 여러 복사본 기반의 설계 사상 466
__8.8.3 시간값 기반의 설계 사상 466
__8.8.4 생각해보기 470
8.9 비지터 패턴 470
__8.9.1 비지터 패턴의 도출 과정 470
__8.9.2 이중 디스패치 481
__8.9.3 생각해보기 484
8.10 메멘토 패턴 485
__8.10.1 메멘토 패턴의 정의 및 구현 485
__8.10.2 시간과 공간 최적화 489
__8.10.3 생각해보기 490
8.11 커맨드 패턴 490
__8.11.1 커맨드 패턴의 정의 490
__8.11.2 모바일 게임 서버에 커맨드 패턴 적용 491
__8.11.3 커맨드 패턴과 전략 패턴의 차이 494
__8.11.4 생각해보기 494
8.12 인터프리터 패턴 494
__8.12.1 인터프리터 패턴의 정의 494
__8.12.2 인터프리터 패턴으로 표현식 계산하기 495
__8.12.3 인터프리터 패턴으로 규칙 엔진 개발하기 499
__8.12.4 생각해보기 502
8.13 중재자 패턴 502
__8.13.1 중재자 패턴의 정의와 구현 503
__8.13.2 중재자 패턴과 옵서버 패턴의 차이점 504
__8.13.3 생각해보기 505

찾아보기 506
Author
왕정,김진호
구글에서 번역 관련 시스템 개발에 참여했고 10여 년간 알고리즘을 연구해왔다. 현재는 금융회사에서 수석 시스템 아키텍트로서 회사의 비즈니스 아키텍처 설계 및 개발을 책임지고 있다.
구글에서 번역 관련 시스템 개발에 참여했고 10여 년간 알고리즘을 연구해왔다. 현재는 금융회사에서 수석 시스템 아키텍트로서 회사의 비즈니스 아키텍처 설계 및 개발을 책임지고 있다.