혼자 공부하는 머신러닝+딥러닝

케라스와 파이토치로 1:1 과외하듯 배우는 인공지능 자습서
$36.29
SKU
9791169213608
+ Wish
[Free shipping over $100]

Standard Shipping estimated by Fri 05/2 - Thu 05/8 (주문일로부 10-14 영업일)

Express Shipping estimated by Tue 04/29 - Thu 05/1 (주문일로부 7-9 영업일)

* 안내되는 배송 완료 예상일은 유통사/배송사의 상황에 따라 예고 없이 변동될 수 있습니다.
Publication Date 2025/04/07
Pages/Weight/Size 188*257*26mm
ISBN 9791169213608
Categories IT 모바일 > OS/데이터베이스
Description
머신러닝 분야 부동의 베스트셀러! 트랜스포머와 LLM 실습까지 더 많이 채웠다!
케라스는 물론 파이토치까지, 혼자서도 1:1 과외하듯 배우는 인공지능 자습서
** 혼공 용어 노트, 저자 직강 유튜브 강의, FAQ(자주 하는 질문), 오픈 채팅 등 풀패키지 제공


『혼자 공부하는 머신러닝+딥러닝』 (개정판)은 머신러닝과 딥러닝의 핵심 개념을 쉽고 체계적으로 익힐 수 있도록 돕는 입문서로, 최신 AI 트렌드를 반영해 더욱 완성도를 높였다. 특히 트랜스포머와 대규모 언어 모델(LLM) 실습을 새롭게 추가하여, 최신 AI 기술이 실제로 어떻게 동작하는지 배울 수 있도록 했다.

1판에서 많은 독자의 사랑을 받았던 ‘1:1 과외하듯 배우는 설명 방식’과 ‘구글 코랩(Colab) 기반 실습’을 유지하면서, 파이토치 예제 코드를 보강했다. 또한, 각 장마다 ‘자주 하는 질문(FAQ)’ 코너를 추가해 학습자의 이해를 돕고, 실습 중 마주할 수 있는 오류나 개념적 궁금증을 쉽게 해결할 수 있도록 구성했다. 입문자가 실전에서 부딪히는 문제를 미리 경험하고 해결하는 능력을 키울 수 있어, 더욱 효과적으로 머신러닝과 딥러닝을 익힐 수 있다.

또한, 혼공 용어 노트, 저자 유튜브 강의, Q&A 커뮤니티 등 다양한 학습 지원을 제공해 혼자서도 끝까지 학습을 이어갈 수 있도록 돕는다. 최신 AI 개념을 이해하고 실습까지 제대로 해보고 싶다면, 지금 이 책을 만나보자.
Contents
Chapter 01 나의 첫 머신러닝

01-1 인공지능과 머신러닝, 딥러닝
인공지능이란
머신러닝이란
딥러닝이란
[키워드로 끝내는 핵심 포인트]
[이 책에서 배울 것]

01-2 코랩과 주피터 노트북
구글 코랩
텍스트 셀
코드 셀
노트북
[키워드로 끝내는 핵심 포인트]
[표로 정리하는 툴바와 마크다운]
[확인 문제]

01-3 마켓과 머신러닝
생선 분류 문제
첫 번째 머신러닝 프로그램
[문제해결 과정] 도미와 빙어 분류
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]

Chapter 02 데이터 다루기

02-1 훈련 세트와 테스트 세트
지도 학습과 비지도 학습
훈련 세트와 테스트 세트
샘플링 편향
넘파이
두 번째 머신러닝 프로그램
[문제해결 과정] 훈련 모델 평가
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

02-2 데이터 전처리
넘파이로 데이터 준비하기
사이킷런으로 훈련 세트와 테스트 세트 나누기
수상한 도미 한 마리
기준을 맞춰라
전처리 데이터로 모델 훈련하기
[문제해결 과정] 스케일이 다른 특성 처리
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]

Chapter 03 회귀 알고리즘과 모델 규제

03-1 k-최근접 이웃 회귀
k-최근접 이웃 회귀
데이터 준비
결정계수(R²)
과대적합 vs 과소적합
[문제해결 과정] 회귀 문제 다루기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

03-2 선형 회귀
k-최근접 이웃의 한계
선형 회귀
다항 회귀
[문제해결 과정] 선형 회귀로 훈련 세트 범위 밖의 샘플 예측
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

03-3 특성 공학과 규제
다중 회귀
데이터 준비
사이킷런의 변환기
다중 회귀 모델 훈련하기
규제
럿지 회귀
라쏘 회귀
[문제해결 과정] 모델의 과대적합을 제어하기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]

Chapter 04 다양한 분류 알고리즘

04-1 로지스틱 회귀
럭키백의 확률
로지스틱 회귀
[문제해결 과정] 로지스틱 회귀로 확률 예측
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

04-2 확률적 경사 하강법
점진적인 학습
SGDClassifier
에포크와 과대/과소적합
[문제해결 과정] 점진적 학습을 위한 확률적 경사 하강법
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]

Chapter 05 트리 알고리즘

05-1 결정 트리
로지스틱 회귀로 와인 분류하기
결정 트리
[문제해결 과정] 이해하기 쉬운 결정 트리 모델
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

05-2 교차 검증과 그리드 서치
검증 세트
교차 검증
하이퍼파라미터 튜닝
[문제해결 과정] 최적의 모델을 위한 하이퍼파라미터 탐색
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

05-3 트리의 앙상블
정형 데이터와 비정형 데이터
랜덤 포레스트
엑스트라 트리
그레이디언트 부스팅
히스토그램 기반 그레이디언트 부스팅
[문제해결 과정] 앙상블 학습을 통한 성능 향상
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]

Chapter 06 비지도 학습

06-1 군집 알고리즘
타깃을 모르는 비지도 학습
과일 사진 데이터 준비하기
픽셀값 분석하기
평균값과 가까운 사진 고르기
[문제해결 과정] 비슷한 샘플끼리 모으기
[키워드로 끝내는 핵심 포인트]
[확인 문제]

06-2 k-평균
k-평균 알고리즘 소개
KMeans 클래스
클러스터 중심
최적의 k 찾기
[문제 해결 과정] 과일을 자동으로 분류하기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

06-3 주성분 분석
차원과 차원 축소
주성분 분석 소개
PCA 클래스
원본 데이터 재구성
설명된 분산
다른 알고리즘과 함께 사용하기
[문제해결 과정] 주성분 분석으로 차원 축소
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주하는 질문]

Chapter 07 딥러닝을 시작합니다

07-1 인공 신경망
패션 MNIST
로지스틱 회귀로 패션 아이템 분류하기
인공 신경망
인공 신경망으로 모델 만들기
인공 신경망으로 패션 아이템 분류하기
[문제해결 과정] 인공 신경망 모델로 성능 향상
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

07-2 심층 신경망
2개의 층
심층 신경망 만들기
층을 추가하는 다른 방법
렐루 함수
옵티마이저
[문제해결 과정] 케라스 API를 활용한 심층 신경망
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]

07-3 신경망 모델 훈련
손실 곡선
검증 손실
드롭아웃
모델 저장과 복원
콜백
[문제해결 과정] 최상의 신경망 모델 얻기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
[자주 하는 질문]

Chapter 08 이미지를 위한 인공 신경망

08-1 합성곱 신경망의 구성 요소
합성곱
케라스 합성곱 층
합성곱 신경망의 전체 구조
[문제해결 과정] 합성곱 층과 풀링 층 이해하기
[키워드로 끝내는 핵심 포인트]
[확인 문제]

08-2 합성곱 신경망을 사용한 이미지 분류
패션 MNIST 데이터 불러오기
합성곱 신경망 만들기
모델 컴파일과 훈련
[문제해결 과정] 케라스 API로 합성곱 신경망 구현
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]

08-3 합성곱 신경망의 시각화
가중치 시각화
함수형 API
특성 맵 시각화
[문제해결 과정] 시각화로 이해하는 합성곱 신경망
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
[자주 하는 질문]

Chapter 09 텍스트를 위한 인공 신경망

09-1 순차 데이터와 순환 신경망
순차 데이터
순환 신경망
셀의 가중치와 입출력
[문제해결 과정] 순환 신경망으로 순환 데이터 처리
[키워드로 끝내는 핵심 포인트]
[확인 문제]

09-2 순환 신경망으로 IMDB 리뷰 분류하기
IMDB 리뷰 데이터셋
순환 신경망 만들기
순환 신경망 훈련하기
단어 임베딩을 사용하기
[문제해결 과정] 케라스 API로 순환 신경망 구현
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]

09-3 LSTM과 GRU 셀
LSTM 구조
LSTM 신경망 훈련하기
순환층에 드롭아웃 적용하기
2개의 층을 연결하기
GRU 구조
GRU 신경망 훈련하기
[문제해결 과정] LSTM과 GRU 셀로 훈련
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
[자주 하는 질문]

Chapter 10 언어 모델을 위한 신경망

10-1 어텐션 메커니즘과 트랜스포머
순환 신경망을 사용한 인코더-디코더 네트워크
어텐션 메커니즘
트랜스포머
셀프 어텐션 메커니즘
층 정규화
피드포워드 네트워크와 인코더 블록
토큰 임베딩과 위치 인코딩
디코더 블록
[키워드로 끝내는 핵심 포인트]
[확인 문제]

10-2 트랜스포머로 상품 설명 요약하기
트랜스포머 가계도
전이 학습
BART 모델 소개
BART의 인코더와 디코더
허깅페이스로 KoBART 모델 로드하기
텍스트 토큰화
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

10-3 대규모 언어 모델로 텍스트 생성하기
디코더 기반의 대규모 언어 모델
LLM 리더보드
EXAONE의 특징
EXAONE-3.5로 상품 질문에 대한 대답 생성하기
토큰 디코딩 전략
오픈AI 모델의 간략한 역사
오픈AI API 키 만들기
오픈AI API로 상품 질문에 대한 대답 생성하기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
부록 한 발 더 나아가기 : 이 책에 대한 독자의 질문
Author
박해선
기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. 블로그(tensorflow.blog)에 글을 쓰고 머신러닝과 딥러닝에 관한 책을 집필, 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다. 『챗GPT로 대화하는 기술』(한빛미디어, 2023), 『혼자 공부하는 데이터 분석 with 파이썬』(한빛미디어, 2023), 『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020), 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019) 등을 집필했다.

『실무로 통하는 ML 문제 해결 with 파이썬』(한빛미디어, 2024), 『머신러닝 교과서: 파이토치 편』(길벗, 2023), 『스티븐 울프럼의 챗GPT 강의』(한빛미디어, 2023), 『핸즈온 머신러닝(3판)』(한빛미디어, 2023), 『만들면서 배우는 생성 AI』(한빛미디어, 2023), 『코딩 뇌를 깨우는 파이썬』(한빛미디어, 2023), 『트랜스포머를 활용한 자연어 처리』(한빛미디어, 2022), 『케라스 창시자에게 배우는 딥러닝 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『파이썬 라이브러리를 활용한 머신러닝(번역개정2판)』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로(개정3판)』(길벗,2021)를 포함하여 여러 권의 책을 우리말로 옮겼다.
기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. 블로그(tensorflow.blog)에 글을 쓰고 머신러닝과 딥러닝에 관한 책을 집필, 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다. 『챗GPT로 대화하는 기술』(한빛미디어, 2023), 『혼자 공부하는 데이터 분석 with 파이썬』(한빛미디어, 2023), 『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020), 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019) 등을 집필했다.

『실무로 통하는 ML 문제 해결 with 파이썬』(한빛미디어, 2024), 『머신러닝 교과서: 파이토치 편』(길벗, 2023), 『스티븐 울프럼의 챗GPT 강의』(한빛미디어, 2023), 『핸즈온 머신러닝(3판)』(한빛미디어, 2023), 『만들면서 배우는 생성 AI』(한빛미디어, 2023), 『코딩 뇌를 깨우는 파이썬』(한빛미디어, 2023), 『트랜스포머를 활용한 자연어 처리』(한빛미디어, 2022), 『케라스 창시자에게 배우는 딥러닝 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『파이썬 라이브러리를 활용한 머신러닝(번역개정2판)』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로(개정3판)』(길벗,2021)를 포함하여 여러 권의 책을 우리말로 옮겼다.