출간 즉시 베스트셀러에 오르며 독자의 사랑을 받았던 『수학 교과서 개념 읽기』 시리즈가 전 8권으로 완간되었다. 학년별로 쪼개진 초·중·고 수학 개념을 주제별로 연결해 정리한 이 시리즈는 앞서 수, 연산, 원, 직각삼각형 편을 선보였으며, 이번에는 소수, 식, 그래프, 넓이 편을 출간했다. 이로써 각급 수학 교과서에 여러 차례 등장하는 핵심 주제 8가지를 망라했다. 해당 주제에 관한 수학 개념 전체를 한 권에 정리하되, 개념 사이의 연결 관계를 꼼꼼히 설명해 수학의 구조와 체계를 파악할 수 있게 했다.
『수학 교과서 개념 읽기-소수』는 1과 자신만을 약수로 가지는 수인 소수(素數)를 다룬다. 나눗셈과 약수를 먼저 이해하고, 소수의 개념과 소수를 구하는 방법을 설명한다. 또한 소수를 이용한 소인수분해와 최대공약수, 최소공배수를 다루고, 이것이 복잡한 분수의 계산과 여러 실용적인 문제에 유용하다는 것을 짚고 있다. 그다음 소수의 개념으로부터 다항식을 인수의 곱으로 인수분해하는 데까지 나아간다.
이 책은 기초 개념부터 차근차근 설명하며 상위 개념으로 나아가기 때문에 어느 학년에 있든, 수학 실력이 어떠하든 상관없이 쉽게 따라 읽을 수 있다. 수학을 포기할까 고민하던 청소년에게는 수학과 다시 친해지는 계기를 제공하고, 문제 풀이 연습은 많이 했지만 기본 개념과 원리 이해는 부족했던 청소년에게는 한 단계 도약하는 발판이 되어 줄 것이다.
1. 인수분해의 대상, 다항식
2. 다항식의 구분, 차수
3. 인수분해의 의미
4. 공통 인수를 이용한 인수분해
5. 완전제곱식을 이용한 인수분해
쉬어 가기 | 소수를 계산하는 매미
Author
김리나
서울교육대학교를 졸업한 뒤 같은 학교 대학원에서 수학 교육으로 석사 학위를, 미국 보스턴 칼리지에서 수학 교육으로 박사 학위를 받았다. 미국의 공통 수학 교육 과정 연구에 참여했으며, 한국과 미국의 초·중·고 수학 수업 사례 및 평가 방법에 대한 비교 연구를 진행한 바 있다. 현재는 서울목운초등학교에서 교사로 근무하며, 서울교육대학교 겸직 교수로 있다.
다수의 수학 교과서 집필에 참여했으며, ‘선생님도 놀란 초등수학 뒤집기’ 시리즈의 『약수와 배수의 이해』 『어림하기』 편을 비롯해 『십대를 위한 맛있는 수학사 1, 2』 『수학을 못하는 아이는 없다』 등을 썼다. 미국에서 Reading, Writing, and Discussing at the Graduate Level(공저) Mathematics Teaching and Learning(공저)을 펴냈으며 뒤의 책은 『초등학교 수학, 어떻게 가르치지?』라는 제목으로 한국에도 출간되었다.
서울교육대학교를 졸업한 뒤 같은 학교 대학원에서 수학 교육으로 석사 학위를, 미국 보스턴 칼리지에서 수학 교육으로 박사 학위를 받았다. 미국의 공통 수학 교육 과정 연구에 참여했으며, 한국과 미국의 초·중·고 수학 수업 사례 및 평가 방법에 대한 비교 연구를 진행한 바 있다. 현재는 서울목운초등학교에서 교사로 근무하며, 서울교육대학교 겸직 교수로 있다.
다수의 수학 교과서 집필에 참여했으며, ‘선생님도 놀란 초등수학 뒤집기’ 시리즈의 『약수와 배수의 이해』 『어림하기』 편을 비롯해 『십대를 위한 맛있는 수학사 1, 2』 『수학을 못하는 아이는 없다』 등을 썼다. 미국에서 Reading, Writing, and Discussing at the Graduate Level(공저) Mathematics Teaching and Learning(공저)을 펴냈으며 뒤의 책은 『초등학교 수학, 어떻게 가르치지?』라는 제목으로 한국에도 출간되었다.